pheo

What is Rheo? ... e e 2
Who should use Rheo? ... e 2
Why doweneed Rheo? ... i 2
The philosophy of Rheo ... 4
Installation ... e 5
B g U .ot e e e 5
S TeT: 10 Y= ¥ | o 6
Adding a config . ..o 7
Build directorycoovinii 9
Configurationt e e 9
[7 - PP 9

L 1120 T 11 9
Content directoryot i e e e e 9
Configurationooiiiiiiiii i e 10
0 1T T 11 10
Formats 10
P . 10
H M L ..o e e e 10
EP U B ..o 10
Configuration ...t e 10
CLIflag ..o e e e e e 10

L 11T T 1 10
081 1< 11
EPU B . 11
P . e 11

H ML ..o e e e e e 11
Frequently Asked Questionscooiiiiiii i, 12
What is the difference between Typst and Rheo? 12
How do I read EPUBs on my system?ccciiiiiiininn.... 12
Who maintains Rheo? i 12
Can I contribute to Rheo? ... 12

Bibliographyooiii 12

What is Rheo?

The simple answer is that Rheo (ree-oh) is a new and more flexible way to produce and
publish digital documents. The less simple answer is that Rheo is a typesetting and
static site engine based on Typst. This guide explains both Aow to use Rheo, and why it
might be for you.

Rheo allows you to produce a website, a fixed-size document, and an adaptive document
from a single set of source Typst files. It allows you to do something similar to LaTeX—
except that Typst is much simpler to write, and we can produce a greater number of
formats with it. The documentation that you are reading now, for example, was typeset
with Rheo. As a result, you can read it as:

e HTML - as a website for browsers.
* PDF - as a fixed-size document for printing.
e EPUB - as an adaptive document for e-readers.

Who should use Rheo?

If you write anything as simple as a blog or as complex as a dissertation or monograph in
Typst, Rheo enables you to publish it in multiple formats. If you are willing to learn a
little bit of syntax, you can turn a piece of writing into a website, an adaptive document,
and/or a printable document.

Some of the things you can write and publish with Rheo include:
* A blog

* A paper

A dissertation

A book manuscript

A novel

A textbook

* Technical documentation

Rheo is for anyone who has ever spent regrettable hours formatting citatons, fighting
with LaTeX, who has experienced the limitations of Markdown, or who wants to benefit
from the richer writing experience that Typst makes possible (more on this in the next
section). It is for students and teachers, humanists and scientists, bloggers and novelists.

If you have only ever used Microsoft Word to author text, or haven’t heard the phrase
‘markup language’ before, we recommend first familiarizing yourself with Typst via the
excellent tutorial. This should give you a good intuition for what Typst is—a markup
language similar to but also more powerful than Markdown—and why you might want to
use Rheo to typeset your documents.

Why do we need Rheo?

Rheo (ree-oh) is an open source typesetting and static site engine for Typst. It is a
typesetting engine because it produces typeset digital documents such as PDF and
EPUB, and a static site engine because it produces websites that don’t require
communication with a custom backend server, but rather are self-sufficient sets of files
that can be natively opened a browser (static sites). Most static site engines these days
employ Markdown, a markup format that is approachable and pretty generic, allowing

https://typst.app/
https://www.latex-project.org/
https://rheo.ohrg.org
https://rheo.ohrg.org/rheo-docs.pdf
https://nota-lang.github.io/bene/?preload=https%3A%2F%2Frheo.ohrg.org%2Frheo-docs.epub
https://typst.app/docs/reference/syntax/
https://typst.app/docs/reference/syntax/
https://typst.app/docs/tutorial/
https://github.com/freecomputinglab/rheo

folks who are not familiar with or otherwise don’t want to deal directly with the required
file formats of the web— HTML, CSS, and Javascript— to write blog posts and other
content which can then be pumped into a static site.

As useful as it is, Markdown has its ambiguities. For one, there isn’t a standardized
syntax for citations or footnotes. Though extensions exist that can produce these, they
are not supported in the core Markdown syntax, meaning that it’s not really Markdown
and can’t be relied upon to work in all contexts that support Markdown. Markdown is
great when using hypertext (hyperlinks, images, etc). It’s not so great when it comes to
things like tables, figures, and math.

Typst is a markup language that integrates with plain text, like Markdown, making it
easy to adopt and joyful to write. Unlike Markdown, however, it is also a Turing-complete
programming language with a modern type system, meaning that it is possible (though
not necessary) to express sophisticated conditional logic controlling where and how text
is rendered. Typst has a concrete and concise syntax for footnotes and citations, and can
express visual constructs such as tables, figures, colors, and mathematical formulas. It
was developed as a modern alternative to LaTeX, Leslie Lamport’s legendary 1980s
addition to Donald Knuth’s original ‘78 Tex typesetting system. For the past 40 years,
LaTeX has been the most expressive way to produce PDF documents, rendering it the de
facto standard for academic and scientific publication. In the past few years, Typst has
become the most promising and powerful alternative to LaTeX due to its maintainers’
effort to build out a reliable PDF compilation toolchain.

In 2025, Typst added experimental support for HTML compilation. Though there are
still many features in Typst that will only produce meaningful output in the PDF
toolchain, the HTML toolchain now supports all of the essential features for academic
documents in the humanities: text decoration, headings, hyperlinks, footnotes, and
citations.! This makes it an extremely good replacement for Markdown as a markup
language in a static site engine, and so: enter Rheo.

Rheo is a CLI (command line interface) that produces PDF, HTML, and EPUB
simultaneously from a folder of Typst documents. It is a static site engine because it can
produce a fully valid website: all it needs is a folder containing valid Typst. Rheo also
provides mechanisms to combine multiple Typst files into a unified EPUB or PDF,
making it a tool that improves the experience of writing books, dissertations, or any
other long-form text in Typst. On the other side of the same coin, Rheo allows you to
produce an offline version of a website such as a blog written in Typst through its PDF/
EPUB toolchain.

Rheo allows you to compile multiple Typst files that link to each other into a single
output, adding what is needed (relative linking) in order to make Typst an ideal markup
language for writing static sites. Typst is the most elegant and flexible way to typeset
PDF documents today; Rheo extends Typst’s capabilities, allowing you to additionally
typeset EPUBs and generate static sites from the same source.2 Naturally, this blog post

1T qualify this with ‘in the humanities’ as scientific papers often require tables, figures, and
mathematical markup. These features are on Typst’s roadmap for html, but are not yet available at time
of writing (January 2026).

2EPUB is on Typst’s roadmap, but is not yet natively supported.

https://github.com/typst/typst/issues/188

was written in Typst, and this site was made with Rheo. If you’re already convinced, feel
free to jump ahead to Getting Started to download Rheo on your system and start
writing.

The philosophy of Rheo

Rheo is a prefix or combining form in English that originates from the Greek word rheos
(p¢oc), meaning flow, stream, or current. Rheo flows Typst documents into a number of
concurrent output formats in PDF, HTML, and EPUB. But other meanings lurk beneath
the surface of this basic idea. Sarah Pourciau has argued that the oceanic is a deep-
rooted metaphor in computing, as all computation at some level seeks solid space in a sea
of digital noise (Pourciau 2022). From Alan Turing’s partial solution to David Hilbert’s
Entscheidungsproblem in the universal machine, to Claude Shannon’s information
theory, to Leslie Lamport’s ordering of events in a distributed system, the key issue at
hand is how to carve out clarity from uncertainty and confusion. Writing has played a
magisterial role in calming the storm of imprecise thought. Long before computation
arrived on the scene, the written word has served as the steward of reason, in the
Western world and beyond, from Mesopotamian cunieform to Twitter. Nota bene (‘Take
note’): that writing can also herald chaos and confusion doesn’t invalidate its capacity for
spreading sensibility.

Rheo is a tool that facilitates the production and publication of documents following from
the original vision of the Internet as a mechanism for lively and reasonably unfettered
academic exchange, rather than the densely commercial space of platform capitalism that
it has become. It should not be so difficult, given the extraordinary capacities of software
and hardware today, to make a piece of writing publically available in a plain and
pleasant format. That there exist digital humanities initiatives measured in months and
years to bring books to the web as basic websites is a clear sign that something has gone
awry.?

Rheo aims to enable the publication of more books, blog posts, and papers without the
necessary capitalist ceremony of creating an account on Substack, Medium, or
Squarespace. A website without any interactive elements such as forms, online
marketplaces, or comments should be simple to set up, as it isn’t rocket science in 2025
thanks to all the hard work that folks have put into Internet protocols and web
standards. It should be simple to create a PDF or EPUB for sharing with colleagues or
collaborators—as simple as it is to send an email.

This is the vision of the world to which we at the free computing lab aspire, and in search
of which we have built Rheo. Rheo is the first installment in a larger set of writing tools
we aim to build, which will include processes for collaboratively drafting documents,
constructing and working with digital libraries, and more.

3There are many exciting and experimental ways of presenting text and other conent in the digital
humanities. But we think that it should be easier that it currently is to publish and distribute books
digitally, simply and straightforwardly.

https://github.com/freecomputinglab/rheo.ohrg.org/blob/main/pages/why-is-rheo.typ
https://github.com/freecomputinglab/rheo.ohrg.org/
https://freecomputinglab.ohrg.org

Installation

The easiest way to install Rheo is from crates.io, the Rust language’s package manager. If
you don’t already have Rust/cargo, you will need to install those first. Open your
terminal, and run the following command:

cargo install rheo --locked

Rheo is packaged as a standalone binary, and doesn’t require any version of Typst on
your system. (Note that even if you already have Typst on your system, Rheo will use its
own embedded version of the compiler.) Refer to Rheo’s source code for more information
and installation options.

Firing up
With Rheo we can produce a static site, a PDF, and an EPUB from a Typst document.
Let’s create a directory with a single Typst file in it:

mkdir project uno
touch project _uno/index.typ

As one of Rheo’s outputs is a static site, the landing page will default to one named
‘index’. (If this file doesn’t exist, Rheo will present you with a basic listing of all the other
files in the site.) Let’s put some Typst in the index. typ file:

project uno/index.typ
= Project uno
Project uno is a writing project.

Rheo aims to keep out of your way as much as possible, and doesn’t require that you add
any special syntax or metadata to your files to work. This single Typst file we need to get
started. Provided you've already installed Rheo on your system, we can compile the
project. You can tell Rheo to compile a folder by pointing the compile command at it:

rheo compile project _uno

This command produces a build subdirectory inside the base directory which contains a
PDF, an EPUB, and a static site (HTML and CSS). Your project folder should now look
like so:

L— project uno.epub

F— index.html
L— style.css

F—— build
|
|
|
|
|
|

https://crates.io/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://github.com/freecomputinglab/rheo

| L— index.pdf
L— index.typ

It’s a little tiring to have to run the compile command every time we make a change,
though. Let’s spin up a development server to see live changes across all output formats
as we edit the source:

rheo watch project uno --open

The --open flag here indicates that we’d like to open the output using our system’s
default applications. Provided you have an EPUB reader on your system (if you don’t, we
recommend installing bene), you should now have a PDF, an EPUB, and a website in
front of you. As simple as that!

Scaling up

Let’s kill that process (with Ctrl-C). Rheo compiles documents from across your project
directory towards EPUB, PDF, and HTML simultaneously, whereas the Typst compiler
typically takes just one Typst file and produces one kind of output.* Let’s add a couple of
files to our project and link between them:

project uno/about.typ
= About
Project uno is an incredible writing project that will transform the way we
understand the world.
If you want to be involved, see the #link("./contact.typ")[Contact page].

project_uno/contact.typ

#let email = "myemail@mydomain.com"
= Contact

To learn more about project uno, email me at #link("mailto:" + email) [#emaill]

And let’s also link to the two new pages on the index page:
project uno/index.typ

= Project uno

Project uno is a writing project.

- #link("./about.typ") [About]
- #link("./contact.typ")[Contact]

Now let’s run Rheo again, but this time let’s only build the HTML and EPUB outputs:

rheo watch project uno --html --epub --open

“Typst allows you to break up your projects using modules, but still requires one entrypoint. Rheo, by
contrast, enables multiple entrypoint files, corresponding to multiple standalone pages in a static site.

https://github.com/nota-lang/bene
https://typst.app/docs/reference/foundations/module/

Note how the relative links are working across both the EPUB and the PDF. Relative
linking is one of the key features in Rheo that enables you to build richer static sites and
EPUBs beyond using just Typst. All of Typst’s other features such as variables are fair
game, too, as Rheo just uses Typst’s compiler under the hood.

Adding a config

One issue with the EPUB that is currently being produced is that the index.typ section
shows up last, after the about.typ and contact.typ, as Rheo orders files lexicographically
by default. This is probably not what we want, as the index page acts as a sort of table of
contents in our writing project currently.

To sophisticate the way that Rheo produces outputs, we can add a rheo.toml config at the

base of the project directory:

project uno/rheo.toml
version = "0.1.0"

[epub.spine]
title = "Project Uno"
vertebrae = ["index.typ", "about.typ", "contact.typ"]

This config uses the notion of a spine to indicate a custom order for the sections. We’ll
learn more about these later on in this documentation.

Let’s run the watch command again, this time with all outputs like the first time:
rheo watch project uno --open

Great! The EPUB order is fixed. We now, however, have three distinct PDF's that are
being created: one for each page. This is because Rheo defaults to producing one PDF per
file in the project directory. We can configure Rheo to merge files together into a single
PDF output by specifying a PDF spine, as we did with EPUB, and setting the merge
attribute to true:

project uno/rheo.toml
version = "0.1.0"

[epub.spine]
title = "Project Uno"
vertebrae = ["index.typ", "about.typ", "contact.typ"l]

[pdf.spine]

title = "Project Uno"

vertebrae = ["index.typ", "about.typ", "contact.typ"]
merge = true

Before we run this again, let’s also clean the outputs in the build directory, as we don’t
need those individual PDFs that we produced anymore:

https://typst.app/docs/reference/scripting/

rheo clean project uno
rheo watch project uno --open

Now we have a fully featured writing project, with nice-looking and orderly outputs in
PDF, EPUB, and in HTML!

Rheo allows you to write documents in plain Typst without requiring any additional
syntax or metadata. Because Rheo can combine multiple files into unified outputs,
however, we need a way to reference other files in the same Rheo project.

The syntax for these relative links in Rheo should be familiar, as they look just like
regular Typst links, but reference a .typ file in the same directory as its target:

#link("./another-section.typ")[Another section]

When you compile a project with Rheo, relative links to other Typst documents in the
same directory will be resolved and transformed according to the output format. What a
relative link transforms to depends on both the output format and your Rheo
configuration, as using features such as spines affects the control flow between your
source Typst and output formats.

¢ In HTML, relative links become <a> tags that point to the relevant html page.

¢ In PDF, relative links either become plain text (if input Typst is not combined, and
thus produces one PDF per source document), or links to the relevant sections in the
output document (if your config specifies a spine with the merge attribute set).

¢ In EPUB, relative links become links to the relevant sections in the EPUB.

Relative linking is what allows Rheo to produce fully functional static sites. It is also a
feature that you can use to help you organize large writing projects. (Note that the Typst
import keyword works as you would expect in Rheo, and so can also/still be used as a
mechanism to modularize projects.)

Rheo is a CLI that produces PDF, HTML, and EPUB simultaneously from a directory of
Typst source documents. The directory that contains your Typst is called the project
directory, and you can compile it like so:

rheo compile path/to/projectdirectory

In general, there are two ways to configure Rheo:

1. By passing flags directly to the CLI command.
2. By specifying configuration in a rheo.toml file at the root of the project directory.

If you compile a Rheo project directory without a rheo.toml file, the following default
settings will be applied to compile your project.

version = "0.1.0"

content dir = "./"

build dir = "build"

formats = ["pdf", "html", "epub"]

https://typst.app/docs/
https://typst.app/docs/reference/foundations/module/

[epub.spine]
vertebrae = ["**/* typ"]
title = "[project directory name]"

To point Rheo to a rheo.toml file that is not at the root of the project directory, specify it
directly via the CLI:

rheo compile path/to/project --config path/to/config

Build directory

Rheo produces outputs in a simple directory structure with one subdirectory for each
kind of output. By default, Rheo produces all outputs (PDF, HTML, and EPUB) in a
build directory instide the project directory:

build/

— epub

| L— blog post.epub

— html

| | portable epubs.html

| L— style.css
L— pdf

L— portable epubs.pdf

The build directory path is calculated relative to the content directory. This is important,
as if you change the content directory, then your build directory path will become
relevant to that directory.

Configuration
CLI flag

You can specify a build directory with either the compile and watch commands:

rheo compile path/to/project --build-dir path/to/build

rheo.toml
The build directory is specified at the top level of the rheo.toml:

build dir = "custom build directory"

Content directory

By default, Rheo will search your entire project directory for Typst documents. You can,
however, indicate a specific subdirectory that Rheo should use if you prefer. This can be
helpful for structuring projects, as it allows you, for example, to keep a separate drafts
folder that Rheo will not compile.

The default content directory is the same path as the Rheo project directory. It is
important to note that if you specify a custom content directory, all other configuration
such as build dir and spine globs will operate relative to the content directory.

Configuration

rheo.toml
A custom content directory can be specified at the top level of the rheo.toml. The path is
calculated relative to the project directory:

content dir = "pages"

Formats

By default, Rheo produces three different output formats simultaneously: PDF, HTML,
and EPUB. There are cases in which you may only want to produce one of these formats,
however, or to exclude one format because your project either cannot support or does not
require it.

PDF

Typst, the programming language and compilation toolchain that underwrites Rheo,
natively and fully supports PDF.

HTML

Typst experimentally supports HTML. This means that not all Typst syntax will
translate to a meaningful HTML structure. The most common features in everyday prose
are all supported, however, such as text markup, links, headings, footnotes, and citations.
For more information on which features are currently supported in Typst’s HTML
export, refer to the HTML export tracking issue.

EPUB

Typst does not yet support EPUB, but it is supported in Rheo. As EPUB export is on
Typst’s roadmap, Rheo will track this feature closely and look to integrate with it when it
lands in the future.

Configuration

CLI flag
You can constrain Rheo to producing one or more formats by passing one or more of the
following flags to compile or watch:

rheo compile path/to/project --pdf
rheo compile path/to/project --html
rheo compile path/to/project --epub

rheo. toml
You can also specify formats at the top level of rheo.toml in an array that contains one or
more formats. The default, if formats is not specified, is an array with all three formats:

formats = ["pdf", "html", "epub"]

https://typst.app/
https://typst.app/docs/reference/html/
https://github.com/typst/typst/issues/5512
https://github.com/typst/typst/issues/188

Spines

A spine in Rheo is the backbone or ‘table of contents’ of Typst source files that should be
compiled to an output format. It takes its name from the epub specification, in which the
spine articulates—or reticulates— the set and order of chapters included.

You can specify a spine’s vertebrae for any output format using an array of glob strings in
rheo.toml:

[epub.spine]
title = "My epub"
vertebrae = ["intro.typ", "*.typ"l]

Notice how the first entry intro.typ is a specific file, whereas the second *. typ captures a
range of files. When a glob string captures a range of source files, they will be ordered
lexicographically in the spine.

EPUB

An EPUB must have a spine in order to be valid. By default, Rheo will infer the following
spine if not specified:

[epub.spine]

title = "[project folder name]"
vertebrae = ["**/* typ"]
PDF

By default, Rheo generates one PDF per Typst source file. You can specify a spine for the
PDF format in order to reticulate multiple source documents into a single output PDF by
indicating the vertebrae and setting merge to true:

[pdf.spine]

title = "My reticulated pdf"
vertebrae = ["intro.typ", "*.typ"]
merge = true

In a PDF generated in this way, relative links will resolve to internal document links that
point to the relevant section.

HTML
Rheo does not currently support customizing HTML spines. The default spine uses all
Typst files:

[html.spine]
title = "[project folder name]"
vertebrae = ["**/* typ"]

When Rheo generates HTML, it injects a default stylesheet into the generated static site
for a simple, modern, and mobile-friendly aesthetic. ‘Screening the subject’ is a website
generated with the default Rheo stylesheet for reference.

https://www.edrlab.org/open-standards/anatomy-of-an-epub-3-file/
https://www.man7.org/linux/man-pages/man7/glob.7.html
https://github.com/freecomputinglab/rheo/blob/main/src/css/style.css
https://screening-the-subject.ohrg.org

You can fully customize the stylesheet by adding a style.css at the root of your project
directory. Note that if your project contains a custom style.css, none of the styles in the
default stylesheet will be applied. If you want to build on the default styles, copy and
paste the default stylesheet into the style.css file in your project directory.

Frequently Asked Questions
What is the difference between Typst and Rheo?

Typst is a markup/programming language that provides its own toolchain which includes

a CLI. You can use the Typst CLI to compile one Typst document to one kind of output
file:

typst compile source.typ # compile to PDF
typst compile --features html --format html source.typ # compile to HTML

Rheo compiles a project folder to three outputs—PDF, HTML, and EPUB—concurrently.
It allows you to configure how certain source files should be merged (to produce a
‘combined’ EPUB or PDF file, for example, via spines), and also allows you to enrich
certain outputs (such as HTML via custom CSS) with non-Typst content. Rheo supports
EPUB natively, which is not currently supported by the upstream Typst CLI (though it is
on the roadmap). In summary, Rheo is a opinionated way to manage writing projects
with Typst.

How do I read EPUBs on my system?

Mileage varies greatly on EPUB reading niceness across systems! If youre interested to
learn more, we have written more about this here. If you don’t have a good EPUB
reading experience currently, we recommend trying bene, an EPUB reading system that
we are developing.

Who maintains Rheo?

Rheo is developed by the Free Computing Lab, an academic research consortium that
researches the nature of computing freedom. If you're interested to learn more or get
involved, you can join our Zulip.

Can I contribute to Rheo?

Yes! Rheo is written in Rust and developed in public through Github. You can track
development and submit issues or requests for features through that platform. While in
principle we welcome community pull requests, it’s best to join our Zulip and ask about it
first, to confirm that your work will not go to waste.

Bibliography
Pourciau, Sarah. 2022. “On the Digital Ocean.” Critical Inquiry 48 (2): 233-61. https://
doi.org/10.1086/717319.

https://github.com/freecomputinglab/rheo/blob/main/src/css/style.css
https://typst.app/
https://github.com/typst/typst/issues/188
https://willcrichton.net/notes/portable-epubs/
https://github.com/nota-lang/bene
https://freecomputinglab.ohrg.org/
https://freecomputinglab.zulipchat.com/join/dit724hcwgbhic3xxwkdpkqs/
https://github.com/freecomputinglab/rheo
https://freecomputinglab.zulipchat.com/join/dit724hcwgbhic3xxwkdpkqs/
https://doi.org/10.1086/717319

	What is Rheo?
	Who should use Rheo?
	Why do we need Rheo?
	The philosophy of Rheo

	Installation
	Firing up
	Scaling up
	Adding a config
	Build directory
	Configuration
	CLI flag
	rheo.toml

	Content directory
	Configuration
	rheo.toml

	Formats
	PDF
	HTML
	EPUB
	Configuration
	CLI flag
	rheo.toml

	Spines
	EPUB
	PDF
	HTML

	Frequently Asked Questions
	What is the difference between Typst and Rheo?
	How do I read EPUBs on my system?
	Who maintains Rheo?
	Can I contribute to Rheo?

	Bibliography

